
Ethical Student Hackers
Docker

● The skills taught in these sessions allow identification and exploitation of security vulnerabilities in
systems. We strive to give you a place to practice legally, and can point you to other places to
practice. These skills should not be used on systems where you do not have explicit permission
from the owner of the system. It is VERY easy to end up in breach of relevant laws, and we can
accept no responsibility for anything you do with the skills learnt here.

● If we have reason to believe that you are utilising these skills against systems where you are not
authorised you will be banned from our events, and if necessary the relevant authorities will be
alerted.

● Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you
are able to confirm you are allowed to.

The Legal Bit

● Before proceeding past this point you must read and agree to our Code of Conduct - this is a
requirement from the University for us to operate as a society.

● If you have any doubts or need anything clarified, please ask a member of the committee.

● Breaching the Code of Conduct = immediate ejection and further consequences.

● Code of Conduct can be found at
https://shefesh.com/downloads/SESH%20Code%20of%20Conduct.pdf

Code of Conduct

What is docker?

“an open-source project that automates the deployment of software applications inside containers
by providing an additional layer of abstraction and automation of OS-level virtualization on Linux.”

But what does that really mean?

Docker is a tool that allows you to deploy sandboxed applications (known as containers) that can
be run on the host operating system.

This means that you can package an application alongside all of its dependencies into a
standardized unit.

In simple terms, instead of shipping the application, you ship them the computer.

“Well it works on my machine” - So ship them your machine! Docker ensures that the packages, libraries
and other softwares that your application relies upon are the same between your machine and other
peoples

Easier deployment - Docker transforms the 15 pre-deployment commands you need to run to make sure
things are up to date, migrations are run and files are moved to the right locations into 1 file and 1
command, making it easier to get deployments out quicker to your users, it also means that if you need to
update your deployment steps, you can do that and have them used without having to make sure everyone
knows the new way of doing it.

Containers allow for fine control over resource allocation which can result in lower costs overall

Containers allow the host system to remain safe even when a container is compromised (Most of the
time)

Why should I use docker?

Firstly, we need to find an image to run! We will be using the official https://hub.docker.com/ website to
find images that we can run.

Most docker containers on Docker Hub have instructions on how to properly run the container, as the
instructions can differ depending on the application.

For example, docker run -it -v $(pwd)/data:/data -p 25565:25565 -e EULA=true --name mc_server
cmunroe/bukkit

- -it - Use an interactive terminal, it allows us to type commands
- -v - Use a volume, allowing us to share a folder between the host and the docker container
- -p - Translate the port from container port to host port (So we can access from localhost)
- -e - Pass an environment variable to the container
- --name - Name the image to something we can remember
- cmunroe/bukkit - The actual name of the container on Docker Hub

Starting a container from an image

https://hub.docker.com/

Docker uses a tag system, similar to Git’s branches

They allow us to use different versions of the same project

In terms of the cmunroe/bukkit image, we can use cmunroe/bukkit:1.17 and cmunroe/bukkit:1.16 to
specify the 1.17 and 1.16 versions of the Minecraft container that we want to use.

When no tag is specified, the ‘latest’ tag is used by default (cmunroe/bukkit:latest). ‘Latest’ doesn’t
necessarily mean it’s the newest version, the developer can tag any version as the ‘latest’.

Tags

Layers

We can view running containers with sudo docker ps, and view all containers (including stopped) with
sudo docker ps -a.

Starting a stopped container is as simple as running sudo docker start [container]. This will run the
container in the background.

- -a - Attach STDOUT/STDERR and forward signals
- -i - Interactive, allows us to type commands to the container

If the the application process we tell docker to run, e.g. java for minecraft, terminates or dies then the
docker container stops. We can, however, tell docker to restart if the process dies.

We can also stop a container with the command line, by simply using sudo docker stop [container].

Starting an existing container

If we have a backgrounded container and we want to have a look around the file system or perform an
upgrade, we can!

Using the sudo docker attach [container], we can drop into the main process of the docker container. In
the case of the minecraft container, it means we can issue minecraft commands.

Using sudo docker exec -it [container] [terminal], we can drop into a new terminal on the container.

- -it - Specify for the terminal to be interactive
- -u - The user to login as, e.g. root
- -e - Environment variables to pass in

Backgrounded containers

The Dockerfile!

The Dockerfile is the centerpiece of Docker, it is one of the scripts that tells the Docker daemon how to
construct our containers.

Docker uses a combination of its own syntax and also bash to setup the environment.

- FROM - Specify the base image to use, e.g. ubuntu or flask
- COPY - Copy files from the host to the container
- RUN - runs a command as a user, by default it runs as root in bash
- WORKDIR - Specify the working directory
- USER - Specify the user to change to
- ENV - Set an environment variable
- EXPOSE - Allow a port to be connected to
- ENTRYPOINT - The script to run once the container has started

An example of a Dockerfile

Once we have a Dockerfile available to us, we can use it to generate an image that we can run. To do this,
we use the docker build command.

Some common flags for building are:

- -t - Assign a tag (identifier/name) to the image so we can easily reference it
- -f - The location of the Dockerfile, if -f isn’t specified then the one in the current directory is used

There are also some flags that allow us to specify the maximum system resources utilised by the
container.

Building a Dockerfile

Docker utilises its own networking system, as all the containers are effectively independent operating
systems.

Each container is placed on a subnet setup by docker, meaning the containers are able to speak to each
other on this subnet. Earlier we mentioned that we can use the -p flag when running a container to forward
the port to our localhost network.

We can specify the network for a container to use when using the docker run command with --network.

Docker by default has 3 networks, a host only adapter, a bridge adapter and a ‘none’ adapter. The bridge
adapter is used by default by all containers, but we can create new adapters with the docker network
create command.

Docker Networks

Demo time!

We are going to move an existing git repository into a docker container, so that everyone on committee
can easily run the website when developing. https://github.com/ShefESH/SeshWebsite

Firstly, we will use a Dockerfile to create a script to move all the code to a Docker container, install the
environment.

Then we’ll show how you can use docker-compose to spin up a couple of containers at the same time.

Moving a project to Docker

https://github.com/ShefESH/SeshWebsite

Docker, by default, is relatively secure. However there are some misconfigurations that can cause Docker
to become insecure.

As Docker utilises the host’s kernel within the containers, if there is a vulnerability in the host kernel then it
means that a container can potentially exploit the host and gain remote code execution on the host.

This is very bad :/

A simple solution to this is to keep your software updated!

Vulnerabilities when using Docker

There are also some configurations that can make Docker vulnerable.

If you are a member of the docker group, then you can easily gain root! Simply exploit the volumes ability
to mount the host operating system to a container. Note: this is done from outside the container

You can find best practices here: https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html

There are also ways to break out of a container:

- Running a docker container with --privileged can allow the container to interact with host ports,
capabilities and overall lead to code execution on the host as root. This is VERY bad!

- To mitigate this, resist using the --privileged flag. Instead, individually assign the minimum
amount of capabilities that the container needs to function with --cap-add.

- Various docker capabilities are dangerous and can be used for privilege escalation, such as
CAP_SYS_ADMIN, CAP_SYS_MODULE, and DAC_OVERRIDE

More vulnerabilities

https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html

If the docker socket (find / -name docker.sock 2>/dev/null) is mounted inside the container you can use it
to escape

You may also be able to find dockerfile or docker-compose.yml files that leak credentials

Finally, some versions of Docker are vulnerable to CVE-2019-5736, which can be abused if Docker can be
run as root

More details:
https://book.hacktricks.xyz/linux-unix/privilege-escalation/docker-breakout/docker-breakout-privilege-esc
alation

Places to practice: Laboratory, Ready, TheNotebook and Monitors on hackthebox.eu

Articles: CVE-2019-5736 (https://unit42.paloaltonetworks.com/breaking-docker-via-runc-explaining-cve-2019-5736/), Privileged
Flag Exploit Example (https://0xdf.gitlab.io/2021/05/15/htb-ready.html#shell-as-root-host), CVE-2019-5736 Example
(https://0xdf.gitlab.io/2021/07/31/htb-thenotebook.html#shell-as-root)

More Docker Breakout Techniques

https://book.hacktricks.xyz/linux-unix/privilege-escalation/docker-breakout/docker-breakout-privilege-escalation
https://book.hacktricks.xyz/linux-unix/privilege-escalation/docker-breakout/docker-breakout-privilege-escalation
https://unit42.paloaltonetworks.com/breaking-docker-via-runc-explaining-cve-2019-5736/
https://0xdf.gitlab.io/2021/05/15/htb-ready.html#shell-as-root-host
https://0xdf.gitlab.io/2021/07/31/htb-thenotebook.html#shell-as-root

Upcoming
sessions

What’s up next?
www.shefesh.com/sessions

CompSoc:

17 Nov 2021 - YII Pt. 2 Workshop

24 Nov 2021 - YII Pt. 3 Drop In Session

02 Dec 2021 - C++ Workshop

SESH:

 22 Nov 2021 – Shells

 29 Nov 2021 – Privilege Escalation

 06 Dec 2021 – Hack the Box

Any Questions?

www.shefesh.com
Thanks for coming!

